1年 文科 2年 文科 木 1 1年 文科 2年 文科 火 2 1年 文科 理科 金 5 2年 文科 理科 1年 文科 理科 2年 文科 理科 火 2 時間割コード 時間割コード 時間割コード 時間割コード 総合科目 F(数理・情報) 総合科目 F(数理・情報) 50711 A 数理科学概論Ⅰ(文科生) 講義題目 授業の目標概要 文科生向けに一変数関数の微分法の基本的な考え方から始めて,二変数関数の偏微分法の基礎と応用ならびに重積分に関する基礎的な内容を扱う科目である. 社会科学に関連する題材を織り交ぜ,数学的な概念を把握することに重点をおいて講義する. 講義内容はおおむね授業計画に記載されている通りであるが,担当教員によって順序は異なることがある. この科目を履修した後に,より進んだ内容を理科生向け総合科目「微分積分学続論」で学ぶことができるが,そのためには「数学II」「数理科学概論II」もあわせて履修しておくことが望ましい. 50293 A 数理科学概論Ⅱ(文科生) 權業 善範 講義題目 授業の目標概要 文科生向けの,行列の定める線型変換(一次変換)の固有値と固有ベクトルを求める手法と その応用を扱う科目である.講義内容はおおむね授業計画に記載されている通りであるが, 担当教員によって順序は異なることがある.この科目では「数学 II 」で扱う内容を前提とするが, 基礎科目「数学 I 」で扱う内容は前提としない. ただし,項目 3 においては「数学 I 」の関連する 内容を理解しておくことが望ましい. 51414 A 講義題目 授業の目標概要 実現象の微分方程式による数理モデリングとシミュレーションは工学的問題の解決を目指す数理工学において重要な研究手法である. 微分方程式による系のダイナミクスの記述は,力学系と呼ばれる数学理論として体系化されており,数理モデリングの際の必須の知識となっている. また,微分方程式が解析的に解けることはまれであり,シミュレーションが必須となるが,そのためには数値解析に基づく適切な実装が不可欠である. 本講義では,微分方程式による数理モデリングと数値解析の基礎を様々な題材を通して学び,これらが互いに不可分の関係にあることを理解することを目標とする. 50294 A 講義題目 授業の目標概要 ビッグデータの時代と言われている。近年、データの計測およびストレージ技術の発達とともに、大規模データから適切に情報抽出し、それを意思決定に活用することが必須のリテラシーとなっている。いっぽうデータの形式と対応する解析法の変化は著しく、新しい方法を正しく利用するために、普遍的な統計科学の原理を理解することが重要である。基礎となる統計数理とともに、具体的な統計解析手法とその運用を、 統計ソフトウェアによるデータ解析実習を通じて習得する。 統計データ解析Iでは、受講者が統計ソフトウェアを用いた実験によって確率的現象に慣れ、統計推測法の意味を理解し、データ解析の方法を実習する。統計ソフトウェアRの使い方を学んだあと、シミュレーションによってランダムネスと極限定理を 体験する。後で必要になる確率分布を学び、基本的な記述統計量と標本分布に関する基礎事項を学習する。推測統計における基礎的な推定・検定法、および分散分析の方法を、データ処理を通じて実習する。 開講 授業科目名 開講 授業科目名 開講 授業科目名 数理工学入門 開講 授業科目名 統計データ解析Ⅰ 数理科学概論Ⅰ 数理科学概論 II(文科生) 数理工学入門 データサイエンス入門 担当教員 伊藤 健一 担当教員 担当教員 泉田 勇輝 担当教員 小池 祐太 所属 数学 所属 数学 所属 工学部 所属 数学 曜限 曜限 曜限 曜限 対象 対象 対象 対象
元のページ ../index.html#181